Self-assembly of class II hydrophobins on highly polar surfaces

نویسندگان

  • MATHIAS S. GRUNÉR
  • Markus B. Linder
چکیده

Hydrophobins, adhesive proteins produced by filamentous fungi, have been described as the most surface active proteins known and show extraordinary properties regarding formation of surfaces. Hydrophobins have roles in the growth and development of the fungi including function in adhesion to surfaces, reducing surface tension for aerial growth and spore hydrophobicity and to aid spreading of aerial spores. Observations of filamentous fungi show that the structures formed by their mycelia can be very hydrophobic. Furthermore, airborne spores (conidia) covered with a surface layer of hydrophobin has been shown to mask the recognition of the conidia by the human immune system and hence prevents immune response. The knowledge of how hydrophobins aid in producing these fascinating properties is far from complete. This study aims to explain this by examining the abilities of the class II hydrophobins HFBI, HFBII and HFBIII to bind to submerged polar surfaces making them more hydrophobic, replicating the role hydrophobins have when forming hydrophobic surface coatings by self assembly on fungal spores and mycelia of filamentous fungi. It is shown here that binding onto submerged polar surfaces occurs by self assembly under specific conditions and that the binding can result in a significant increase in water contact angle of the surface, hence making it more hydrophobic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-assembly of class II hydrophobins on polar surfaces.

Hydrophobins are structural proteins produced by filamentous fungi that are amphiphilic and function through self-assembling into structures such as membranes. They have diverse roles in the growth and development of fungi, for example in adhesion to substrates, for reducing surface tension to allow aerial growth, in forming protective coatings on spores and other structures. Hydrophobin membra...

متن کامل

Fungal Hydrophobin Proteins Produce Self-Assembling Protein Films with Diverse Structure and Chemical Stability

Hydrophobins are small proteins secreted by fungi and which spontaneously assemble into amphipathic layers at hydrophilic-hydrophobic interfaces. We have examined the self-assembly of the Class I hydrophobins EAS∆15 and DewA, the Class II hydrophobin NC2 and an engineered chimeric hydrophobin. These Class I hydrophobins form layers composed of laterally associated fibrils with an underlying amy...

متن کامل

Immobilization of LccC Laccase from Aspergillus nidulans on Hard Surfaces via Fungal Hydrophobins.

Fungal hydrophobins are small amphiphilic proteins that can be used for coatings on hydrophilic and hydrophobic surfaces. Through the formation of monolayers, they change the hydrophobicity of a given surface. Especially, the class I hydrophobins are interesting for biotechnology, because their layers are stable at high temperatures and can only be removed with strong solvents. These proteins s...

متن کامل

Hydrophobin-Based Surface Engineering for Sensitive and Robust Quantification of Yeast Pheromones

Detection and quantification of small peptides, such as yeast pheromones, are often challenging. We developed a highly sensitive and robust affinity-assay for the quantification of the α-factor pheromone of Saccharomyces cerevisiae based on recombinant hydrophobins. These small, amphipathic proteins self-assemble into highly stable monolayers at hydrophilic-hydrophobic interfaces. Upon function...

متن کامل

Pichia pastoris is a Suitable Host for the Heterologous Expression of Predicted Class I and Class II Hydrophobins for Discovery, Study, and Application in Biotechnology

The heterologous expression of proteins is often a crucial first step in not only investigating their function, but also in their industrial application. The functional assembly and aggregation of hydrophobins offers intriguing biotechnological applications from surface modification to drug delivery, yet make developing systems for their heterologous expression challenging. In this article, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011